Neural Networks For Negation Scope Detection
نویسندگان
چکیده
Automatic negation scope detection is a task that has been tackled using different classifiers and heuristics. Most systems are however 1) highly-engineered, 2) English-specific, and 3) only tested on the same genre they were trained on. We start by addressing 1) and 2) using a neural network architecture. Results obtained on data from the *SEM2012 shared task on negation scope detection show that even a simple feed-forward neural network using word-embedding features alone, performs on par with earlier classifiers, with a bi-directional LSTM outperforming all of them. We then address 3) by means of a specially-designed synthetic test set; in doing so, we explore the problem of detecting the negation scope more in depth and show that performance suffers from genre effects and differs with the type of negation considered.
منابع مشابه
Speculation and Negation Scope Detection via Convolutional Neural Networks
Speculation and negation are important information to identify text factuality. In this paper, we propose a Convolutional Neural Network (CNN)-based model with probabilistic weighted average pooling to address speculation and negation scope detection. In particular, our CNN-based model extracts those meaningful features from various syntactic paths between the cues and the candidate tokens in b...
متن کاملNeural Networks for Negation Cue Detection in Chinese
Negation cue detection involves identifying the span inherently expressing negation in a negative sentence. In Chinese, negative cue detection is complicated by morphological proprieties of the language. Previous work has shown that negative cue detection in Chinese can benefit from specific lexical and morphemic features, as well as cross-lingual information. We show here that they are not nec...
متن کاملUABCoRAL: A Preliminary study for Resolving the Scope of Negation
This paper describes our participation in the closed track of the *SEM 2012 Shared Task of finding the scope of negation. To perform the task, we propose a system that has three components: negation cue detection, scope of negation detection, and negated event detection. In the first phase, the system creates a lexicon of negation signals from the training data and uses the lexicon to identify ...
متن کاملMulti-View Face Detection in Open Environments using Gabor Features and Neural Networks
Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...
متن کاملNegation Scope Delimitation in Clinical Text Using Three Approaches: NegEx; PyConTextNLP and SynNeg
Negation detection is a key component in clinical information extraction systems, as health record text contains reasonings in which the physician excludes different diagnoses by negating them. Many systems for negation detection rely on negation cues (e.g. not), but only few studies have investigated if the syntactic structure of the sentences can be used for determining the scope of these cue...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016